
Embedded Reconfigurable Processing
for µUAV Applications

Part I - Onboard Processing

Chris Papachristou

Case Western Reserve University

Cleveland, Ohio 44106

cap2@case.edu

Outline

 On board Information processing

 Main Technologies

 Digital Signal Processors - DSP

 Reconfigurable Computing, FPGAs

 Embedded processing

 Self Reconfigurable processing

 Evolvable Hardware

Onboard UAV Operations

Onboard Processing Requirements

 Computational Performance

 sufficient to accomplish complex imaging algorithms

 Low power and Low Energy

 management of circuitry, architecture

 Minimal physical characteristics

 packaging, weight

 Communication Performance

 antennas, digital soft radio, protocols

 Storage

Key Component Technology

 Digital Signal Processors, DSPs

 Reconfigurable processors, FPGAs

 Embedded processors

Digital Signal Processors (DSPs)

What are DSPs ?

 Embedded microprocessors that are designed to handle
digital signal processing applications in a very cost effective
manner

 Current market leaders:

 TI, Motorola, Lucent

 Market well over - $ 50 Billions

Nature of DSPs

 DSPs utilize special hardware to meet performance, power,
and price points

 Sacrifice orthogonality and ease-of-use to meet goals

 Assume hand-assembly or libraries used for core algorithms

 Compiler mostly used for control and glue logic

DSP principle

 Converting a continuously changing waveform (analog) into a
series of discrete levels (digital)

DSP principle

 The waveform is sliced into equal segments and the
amplitude is measured in the middle of each segment

 The measurements make up the digital representation of
the waveform

0
0

.2
2 0
.4

4 0
.6

4 0
.8

2 0
.9

8
1.

11 1.
2

1.
24

1.
27

1.
24

1.
2

1.
11

0
.9

8
0

.8
2

0
.6

4
0

.4
4

0
.2

2
0

-0
.2

2
-0

.4
4

-0
.6

4
-0

.8
2

-0
.9

8
-1

.1
1

-1
.2

-1
.2

6
-1

.2
8

-1
.2

6
-1

.2
-1

.1
1

-0
.9

8
-0

.8
2

-0
.6

4 -0
.4

4 -0
.2

2
0

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

ADC and DAC

 ADC: analog conversion to digital

 DAC: digital conversion to analog

 Both operations are approximate as the waveforms do not
completely match - filtering needed to smooth them out

DSP algorithms

 Basically various filtering type of algorithms

 FIR: finite impulse response

 IIR: infinite impulse

 Bandpass filter

 AR: autoregressive

FIR filter

 Most widely used filter

 series of delays, multipliers, and adders

 frequency response output fine-tuned to filter's length

DSP - Architecture Characteristics

 DSP architecture is designed to solve one problem well

 Digital filters (FIR, IIR) and FFTs

 In Real-Time

 Architecture features added to speed up this problem

 MAC: multiply & accumulator, speedup FIR tap

 Circular buffer: speedup shifting FIR delay registers

 RISC based: single clock per instruction

 Harvard Architecture: separate instruction & data

 Word oriented

DSP characteristics

 Disadvantages: not a general purpose computer

 slow character processing

 No multi-user operating system support

 No virtual memory, no translate lookside tables

 No memory page protection (Read, Write, Execute)

FIR filter architecture

 Example

FIR on typical processor

 simple assembly FIR routine

Early DSP architecture

 simple datapath and memory structure

Typical architectures

Harvard architecture was coined to
describe machines with separate
memories.
Speed efficient: Increased parallelism.

instructions data

ALU I/OALU I/O

instructions

and

data

Data busAddress bus

Von Neuman architecture
Area efficient but requires higher bus
bandwidth because instructions and
data must compete for memory.

FIR filter on conventional DSP

Use of dot product

Do dotprod UNTIL CE;

dotprod:

 MR = MR + MX0 * MY0 (SS),

 MX0 = DM(I0,M0),

 MY0 = PM(I4,M4);

Baseline DSPs

 Common attributes

 Arithmetic: 16 or 24-bit or even 40-bit fixed point (fractional),
or 32-bit arithmetic operations

 Instructions: 16-, 24- or 32-bit instructions

 Issue: one instruction per cycle, single-issue

 complex, compound instruction encoding, many operations

 highly constrained, non-orthogonal architecture

 dedicated addressing hardware

 specialized addressing modes

Baseline DSP

 attributes (cont)

 on-chip memory architecture

 dedicated hardware for loops and other execution control

 on chip peripherals and I/O interfaces

 low cost, low power, low memory usage

Increasing Parallelism

 Boosting performance beyond faster clock speeds requires the
processor to do more work per cycle

 Two ways to increase the processors' parallelism:

 Increase the number of operations that can be performed in
every cycle

 increase the number of instructions that can be issued and
executed in every cycle

 this leads to pipelining and parallelism

More Operations per instruction

 How to increase the number of operations performed in each
instruction?

 Add execution units (multiplier, adder, i.e. add hardware)
 enhance the instruction set to take advantage of extra hardware
 Possibly, increase the instruction word length (width)
 Use wider buses to keep the processor fed with more data

 Add SIMD capabilities - data parallelism

Architectures for DSPs

 Enhanced conventional DSPs

 Lucent DSP16xxx, ADSP 2116x

 VLIW (Very Long Instruction Word) DSPs

 TI TMS320C6xxx, Siemens Carmel, Philips Trimedia

 Superscalar DSP

 ZSP ZSP164xx

 Hybrid processors

 PowerPC with Altivec Hardware, TriCore

Example

Enhanced conventional DSPs

 More parallelism via:

 Multi-operation data path
 e.g., 2nd multiplier, adder
 SIMD capabilities

 Highly specialized hardware in core
 e.g., application oriented datapath operations (crypto)

 Co-processors
 Viterbi decoder, FIR filtering, mpeg7, etc

SIMD – single instruction multiple data

 Split words into smaller chunks for parallel operations

 Some SIMD processors support multiple data widths, such as
16-bit, 8-bit,...)

 For example, Lucent DSP16xxx, ADI ADSP 211x

Challenges to SIMD

 Algorithms, data organization must be amenable to data
parallelism

 Programmers must be creative, pursuing alternatives

 Reorganization penalties can be significant

 SIMD most effective on algorithms that process large blocks of
data

More Instructions per clock

 How to increase the number of instructions issued and
executed in every clock cycle?

 Use VLIW techniques
 static scheduling

 Use Superscalar techniques
 dynamic scheduling

Superscalar vs VLIW: scheduling

VLIW concept

VLIW Application

 FIR filter loop

Evaluation

 Advantages

 performance

 regular structure

 easier to program – depending on tools

 Disadvantages

 difficult tools -- compilers/schedulers

 deep pipeline latencies

 code size explosion

 higher power consumption

Superscalar DSPs

 Characteristic

 hardware support for instruction control

 2-4 instruction issue per cycle

 lots of parallelism

 Example FIR filter

 All four instructions exec in parallel

Evaluation

 Advantages

 performance

 easier tools -- compilers

 smaller code size

 Disadvantages

 dynamic behavior complicates software development

 execution time unpredictability

 high energy consumption

Hybrids

 Typical approach: Embedded DSP and microcontrollers

 heterogeneous multi-core systems including
 Regular processor cores
 DSP co-processors
 Advanced cryptoprocessors

 Design methods

 tweaking a GPP with DSP support, or

 tweaking a DSP with some microcontrol support, or

 entire new design from scratch

Example: TI OMAP Hybrid Processor

Reconfigurable Processing

Reconfigurable Processing

 Ability of a device to change its internal structure,
functionality, and behavior, either on command, or
autonomously.

 Two methods for execution of algorithms:

 hardwired technology: high performance

 software-programmed microprocessors: high flexibility

 A third approach: Reconfigurable computing

 intended to fill the gap between hard and soft, achieving
potentially much higher performance than software, while
maintaining a higher level of flexibility than hardware

Reconfigurability Classes

 Static Configuration: performed while device is off line.

 Dynamic Configuration: device is on-line, "on the fly".

 Self Reconfiguration: performed autonomously by device.

 Evolution type: Self Reconfiguration with adaptation such as
replication and growth, "bio-inspired".

Reconfigurability Spectrum

Fixed HW

Reconfigurable

Self
reconfigurable

Evolvable

Flexibility,
Fault Tolerance

Generation

1st 4th3rd2nd

Reconfigurable Logic

 Currently implemented by FPGAs

 Static reconfiguration is achieved by downloading into the
FPGA chip a new configuration while the FPGA is off-line

 obvious disadvantages in configuration time

 Traditional FPGAs

Static Configuration

Dynamic Configuration

 It is achieved by inserting new FPGA functionality on the fly,
i.e. while the chip is active

 Certain areas of the device can be reconfigured while others
remain unaffected

 In practice, partial configuration is used to achieve run-time
dynamic reconfiguration

 Xilinx Virtex families

 Altera FPGAs

 Atmel, etc.

Partial Configuration styles

 Module based: distinct portions of the design (modules) that
can be reconfigured separately (Bus Macros)

 independent modules

 communicating modules

 Difference based: making small design changes in local areas
e.g. LUTs, block RAMs, but not routing

Virtex II Architecture

 CLBs, Block RAMs, Config Columns

Module-based Partial Configuration

Bus macros

 Connecting reconfigurable and fixed modules in partial
configuration maps

Major Constraints

 Size and position of a module can not be changed

 Modules can communicate only with neighbors

 No global signals are allowed except clocks

 I/O blocks exclusively accessed by adjacent modules

Difference-based Partial Configuration

 Small changes on the FPGA configuration

 Manually done, usually via an FPGA Editor

 What can be modified?

 LUTs equations

 BRAM contents and BRAM write modes

 I/O standards and pull-ups or pull-downs on external pins

 Flipflop initialization and reset values,

 What cannot be modified?

 Routing, very dangerous: internal contentions

Self Reconfiguration

 A second way for dynamic reconfiguration:

 The chip modifies its own configuration based on peripheral
or internal signals

 This may occur

 under command, or

 autonomously

 This idea leads to the concept of Self Reconfiguration

Why Self Reconfiguration ?

 Ability to operate autonomously in remote, challenging and
hostile environments

 Perform on-board processing and communication

 Variability of function and operation modes

 Quick response to changing ambiance

Potential Self Reconfiguration Apps

 Space exploration probes

 Military & commercial
satellites

 UAVs and µ UAVs

 deep underwater rescue

 nuclear or chemical plants

 autonomous robotics

Key Issues of Self Reconfigurable architectures

 Autonomy

 Real time response

 Low power and energy consumption

 Reliability

About UAVs: Rationale

 Increasing need for flexible embedded processing on board a
variety of aerial vehicles especially µUAVs.

 To perform their mission, µUAVs need unconventional on
board processing capabilities:

 Performing multitude of computationally intensive functions

 Operating autonomously, adapting from one input to another

 Meeting low power and reliability requirements

Rationale (cont)

 Reconfigurable processors based of FPGAs have two traits:
flexibility and parallel processing.

 However, FPGAs lack autonomous adaptation capability while
suffering from power consumption.

 Clearly, mini aerial vehicles, e.g. satellite sensors and µUAVs,
need autonomous, adaptable and dynamically reconfigurable
processors, beyond conventional FPGAs.

Sensor Web Scenario

Communication
Tradeoffs

 Bandwidth =

 Buffer/Latency,

 Data Rate,

 Protocol,

 Error Bit Rate

Self Reconfiguration Approach

 Novel autonomous, adaptable and and self reconfigurable
system has been proposed consisting of 2 basic units:

 Adaptation software manager

 Dynamic reconfigurable hardware fabric

 The approach is based on the twofold concept:
adaptation of the application software coupled with
dynamic reconfiguration of the hardware.

Approach (cont)

 Architecture: reconfigurable at four Layers:

 Layer 4: the Adaptation Manager.

 Layer 3: the Real-Time Operating System RTOS.

 Layer 2: the Embedded Processors and Memory.

 Layer 1: the Reconfigurable Hardware Fabric.

Architecture: Non Traditional Reconfigurable

Reconfiguration Strategy

 Occurs at several levels:

 Selection of application modules by the Adaptation Manager.

 Mapping of modules into the hardware fabric or the embedded
processors, depending on performance requirements.

 Configuration of the hardware fabric and the embedded
processor to meet performance and data delivery
requirements.

 The reconfigurable hardware is essential for mapping of
communications algorithms such as :

 IR filtering,

 multichannel CDMA,

 complex encoding,

 advanced imaging.

Adaptation manager

 The adaptation manager captures real time sensor inputs and
interacts with the Function Libraries.

 The Libraries store pre-built configurations for application
functions

 The manager decides on which configuration to be fed into
the hardware fabric.

 The manager also involves a software learning process to
adapt configuration decisions.

Self Adaptation - Dynamic Configuration

Reconfigurable Fabric

 The reconfigurable fabric consists of a number of processing
tiles each having capability of dynamic reconfiguration

 Tiles are equipped with regularly structured functional units
capable of operation level parallelism.

 Tiles can be hierarchically assembled at several levels using
dynamically interconnected switch-buffer matrices.

 Distributed buffer memory

 Configuration can be achieved within a tile, and along several
interconnected tiles.

 This approach provides good scalability, growth and fault
tolerance.

Reconfigurable Fabrics and Tiles

Reconfigurable Tiles

Core Switch Matrix

Self Reconfigurable and Evolvable Systems

 There is an overalap between the two concepts

 Self reconfiguration operates in real time

 Evolvable reconfiguration implies self-growth and replication
of the reconfigurable hardware at slower pace.

 Evolvable hardware use bio-inspired approaches and may
need technologies not based on CMOS.

Evolvable Hardware

 Evolvable Hardware, EHW, is capable of on-line adaptation

 EHW can change its architecture and behavior dynamically
and autonomously, either through software or by directly
morphing the hardware.

 At present, EHW use evolutionary algorithms or genetic
algorithms as their main adaptive mechanism. However,
other techniques are possible such as Neural Networks.

Evolvable: Inspiration from Nature

Evolvable Hardware Classes

 Extrinsic EHW: simulates evolution by software and only loads
the best configuration to hardware in each generation.

 Intrinsic EWH: simulates evolution directly in hardware.

 Most evolution approaches are extrinsic or off-line types

Evolutionary design and adaptation of circuits

Evolutionary design: extrinsic - intrinsic

Genetic Evolutionary Operations

 Selection

 Crossover

 Mutation

 Use an Objective or Fitness function

Principles of Evolution

 Coding solutions as chromosomes.

 Operating on code, not solutions.

 A string is a candidate solution.

Evolutionary implementation

 Current approaches to EHW implementation:

 use powerful compute engines to run GAs for evolution

 use reconfigurable HW or FPGAs to load evolved HW

 Requires:

 fast evaluation

 low cost for failure

 Future: everything should be seamlessly integrated in HW

Where is Hardware Evolution ?

Some examples: evolving an FPGA design

Is it practical ?

 For most practical real world problems, human designers plus
tools still outperform evolution

 However,

 Hardware evolution does have some niche applications

Adaptive Systems

 Evolution + Reconfigurable Hardware = Real-time Adaptation

 Can adapt autonomously to changes in environment

 Useful when real-time manual control not possible

 E.g. spacecraft systems (sensor processing)

 Non-critical systems are more suitable

 E.g. data compression systems

 plant power management

 ATM cell scheduling

Traditional vs. Evolutionary Search

 Traditional design decomposes from the top down into known
sub-problems

 Applies constraints to ensure design behaves like known sub-
problems

 Evolution works from the bottom up

 Evolution uses fitness to guide performance

 Not directed by prior knowledge

 Oblivious to complexities of the interactions within the circuit

Innovative Circuits

 Circuits that could not be found using traditional design
abstractions are innovative

 Solution may have high performance

 May use less gates that traditional designs

 Analysis shows internal non-digital behaviour

 Examples: evolvable multiplier, adder

Traditional vs Evolvable Multiplier

Traditional = 26 gates Evolved = 21 gates + 7 MUXes

Application Examples of custom EHW

Evolved Antennas

EHW vs. Neural Networks (NN)

EHW vs. Self Reconfigurable, again

 Key issue: real time efficiency

 Self reconfigurable hardware requires fast responses whereas
Evolvable HW is still slow paced

 Combining the two is important for future applications

Layered approach to EHW/Self Reconfigurable

 Key feature: interaction and coordination of two basic entities

 evolvable adaptation software

 dynamic reconfigurable hardware

 We could have used an evolution-based approach to design
both units, i.e. the manager and the fabric. However,

 An Evolvable Hardware fabric would ultimately require
unconventional hardware, not yet available.

 The Evolvable Manager uses a software approach based on
Neural Net learning technique to evaluate and perform
adaptation of application functions

Self Adaptation - Dynamic Configuration

Evolvable Adaptation Model

 Evolvable hardware model consists of two interacting
components

 dynamic reconfigurable hardware and

 a neural network

 The idea is to achieve evolution in the hardware by evolving
configuration candidates via the neural network and testing
them for fitness.

Evolvable Platform

Evolution Modes

 Operation mode: Neural Net (NN) generates configuration
code

 Training mode: NN incrementally evolves configurations by
training itself on input stimuli as well as configuration data
that are recurrently applied after being improved by genetic
operations.

 Other evolution modes e.g. self-diagnosis and self repair are
also feasible.

Training

 During training, candidate configurations are selected from a
population via genetic operations.

 Training continues until a candidate passes a fitness test
depending on responses from the reconfigurable fabric.

 Training may start on command or autonomously, in new
environment, new functions or upgrading for better
performance.

 A major aspect of this scheme is to design a robust training
mechanism for configuration evolution of the dynamic
reconfigurable fabric.

Evolvable Hardware Training

Summary and the Future

 Self reconfigurable and evolvable systems have the potential
to be an important future technology especially for avionics
and space infrastructure.

 EHW based on bio-inspired paradigm using GAs and software
simulation off-line to evolve and discover hardware.

 This is fine in slow growth and self paced evolution but not in
real time.

 In the future, there is need to integrate seamlessly Evolvable
software with Neural Network techniques into dynamic
reconfigurable hardware platforms.

Embedded Reconfigurable Processing
for µUAV Applications

Part II (a) - Information Flow

Chris Papachristou

Case Western Reserve University

Cleveland, Ohio 44106

cap2@case.edu

Outline

 Motivation

 System Concept and Methodology

 Architecture

 Inquiry Processing and Query Processing

 Training

 Conclusions

Motivation: Autonomous UAVs

 UAV scenarios

 Civilian and Military applications

 Threat assessment, rescue & recovery, reconnaissance

 UAV real time info flow

 Queries and Inquiries to UAVs

 Sensory signal processing

 Feature processing

 UAV Response feedback

 Networking UAV

Autonomous UAV Scheme

Autonomous UAV Real Time Requirements

 Queries and Inquiries to UAVs

 Autonomous & Hierarchical Cognitive Learning

 Image processing

 Master/Slave UAV organization

 Networking formations and UAV collaboration

 Mission strategies

System Concept

System Concept (cont)

 The system architecture and methodology manages the real-
time information flow between CC and the Master UAV.

 A key property is the adaptation and learning capability of the
Master in order to respond intelligently to CC queries.

System Architecture

 A central command control
(CC) communications center
interacts in real time with a
Adaptable Mobile Agent
(AMA) on the Master UAV.

 The Master collects sensory
information.

 CC evaluates feedback,
accepting or modifying it.

 CC resends query and
updates its database.

System Architecture Information Flow

 CC prepares queries for the
Master

 Master processes queries

 knowledge base

 sensory data

 CC evaluates feedback,
accepting or modifying it

 CC resends inquiry and
updates its database

System Architecture information flow

 System Architecture
processes the information
flow for an inquiry session
between CC and the
Master.

 Queries operations may
involve:

 Processing & analyzing
“existing” knowledge

 “Augmenting” the
knowledge base

System Architecture information flow (cont)

 Adaptive Query Learning:

 Due to rejections or
otherwise unsatisfaction of
CC's evaluation of result

 Incremental Sensory
Adaption & Learning:

 Preloaded Master with
sensory knowledge (i.e.
High altitude video)

 Independently of its current
mission, the Master is
updating it's sensory

Inquires

 A key element of the CC is an inquiry processor which
transforms user inquiries into formal queries for the AMA.

 An inquiry consists of a number of phrases that resemble a
restricted natural language specifically

 Consists of an <action>, <qualifiers> and a single <object>.

Inquires: Feature Qualifiers

 For example, “find preferred in Ohio landing area”

 where

<action> is “find”;

<qualifiers> are “preferred” & “in Ohio”

and <object> is “area”.

 Feature Qualifiers are characterized by a particular trait which
exhibits a fuzzy description such as “good” or “preferred”.

 For example, “preferred” has a method describing the human
meaning into low level terrain sensory features, e.g.
“clearance”, “roughness”, etc.

Prolog

 Declarative Language

 Declarative Clause Grammars, DCG

 Straight forward mapping to parallel hardware technologies

 Al-based goal searching and Pattern Matching

 Image processing and object recognition

 Optical technologies

 Formulate logical database queries

 Natural-like language processing

 Biophotonics technologies

 Associative memories

Queries

 A formal query is a symbolic expression which can be
described by Prolog's Declarative Clause Grammar (DCG).

 For example, the CC Inquiry

 find preferred in Ohio landing_area

 becomes transformed the AMA query fro the Master UAV:

 find (clearance > 7 and roughness > 8) and in Ohio
landing_area

 Feature qualifiers require offline and online learning by using
a combination of supervised learning (i.e. Neural Nets) and
fuzzy system descriptions.

 Feature Training Strategies

 Hierarchical training modules

 Sensory features on distinct sensor modules on Master UAV

 Preference training module

 Two levels of Learning

 Adaptive feature learning

 Preference-based learning

 Inquiry: find preferred in Ohio landing_area

 Query: find (clearance > 7 and roughness > 8)

Master UAV architecture

 Adaptive recognizer of
patterns and images through
sensors

 For Features & Preferences

 Reconfigurable processor

 On board Library of training
functions

 I/O interfaces and sensors

UAV Training Process

 Hierarchical training modules

 Training sensory features on distinct sensor modules on UAVs

 Preference training module

Training Strategy

Training strategies

 Master:

 Filtering for each parameter data type

 Parameter sensory training based on query preference

 Trained data collected into one feature vector

 Central station (CC):

 Similar to Master but operating on simulated data

 Software filtering

 feature vector data at the Central derived by simulations using
the training knowledge from the Master.

 Query processing: Master

sensory trainer is stored in the local knowledge base

query execution process real-time data from the local sensors.

Query processing: Slave

Slave UAVs organized into fleets to collect multiple data

Collaborative trainer: resolving inconsistencies from multiple UAV data.

Key issues in Master (AMA)

 Associative memories and processors is an enabler
information technology

 All Master subsystems will benefit from large associative
memories

 Command and Control, CC

 Inquiry system – Prolog engine

 Preference Learning – Neural Network Classifier

 Adaptable Mobile Agents, AMA

 Query learning – Supervised Learning, Fuzzy Logic

 Cognitive Image Recognizer – Unsupervised Learning

 Sensory Learning – Supervised Learning

Key Attributes in UAV Scheme

 All UAV subsystems will benefit from large biophotonic
associative memories, especifically

 Command and Control

 Query system – Prolog engine

 Preference Learning – Neural Network Classifier

 Master UAV

 Cognitive Image Recognizer

 Sensory Learning

 Slave UAVs

 Advanced imaging – wavelets

 Collaborative learning

 Associative memories and processors are enablers for
information technology on UAVs

Example: terrain landing

Feature properties

Cluster Charaterization

Query examples and answers

Conclusions

 System Architecture and methodology to manage the massive
information flow and inquires between CC and AMA in
realtime.

 Bio-inspired learning techniques are needed for query and
inquiry processing for feature qualifiers and preferences.

 Bio-inspired learning are needed for pattern recognition of
sensory information.

 Prolog, optical and biophotonic technologies are needed for
processing realtime massive information flow.

Embedded Reconfigurable Processing
for µUAV Applications

Part II (b) – Cognitive Processing
Approach

Chris Papachristou

Case Western Reserve University

Cleveland, Ohio 44106

cap2@case.edu

Outline

 Mission scenario

 Heterogeneous sensor nets

 Characteristics of platforms

 Information management

 Our Approach

 On board UAV architecture

 Adaptive processing

 Evolutionary learning and training

 Associative cognition

Distributed Sensing Concept

Three coordinating sensory networks: ground sensors, UAVs, trooper sensors

Expeditionary Operation

 Three distributed sensory networks

 ground sensors

 UAV sensors

 trooper sensors

 The trooper sensory is normally operating in passive mode,
i.e. avoiding transmissions while receiving data from UAVs
and ground sensors.

 UAV sensors coordinate with the ground sensors to track
information about the target. This information is transmitted
to troopers.

 The ground sensory consists of redundant heterogeneous
sensors that are dispersed en masse to monitor targets.

Ground Sensors

 Sensors are heterogeneous, redundant and disposable.

 They are self-organized by their monitoring threat identity
types:

 Motion

 Sound

 Imaging (infrared)

 Proximity, location

 Chemical, bio, radiation

 Ground sensors communicate point-to-point with other sensors

 Ground sensors normally operate in passive monitoring mode.
They are activated by the UAVs for transmission.

UAV Sensors

 UAV sensors are equipped with long-range communication
devices. They respond to ground sensory, troopers and other
UAVs.

 UAVs may be organized in hierarchical network formations, i.e.
master UAVs and lower flying mini UAVs.

 Possible intelligent information and threat discovery by UAVs

 Threat identity

 threat coordination

 Overall threat assessment

 Threat pattern tracking

 Information bridge between troopers, ground sensors and
distant command station.

Trooper Sensors

 Trooper sensors are carried on soldiers to retrieve information
normally from the UAVs, occasionally the ground sensors and
in emergency the command center

 Characteristics

 Support information retrieval and interpretation

 Support coordination among trooper sensors

 Passive sensory: mostly receiving

 Threat avoiding and/or safe threat practice for safety of
troopers

Data Gathering Principles

 Troopers gather data from their own sensors and from nearby
sensory assets, i.e. UAVs and ground sensors. Sensory data
is relayed all the way from assets located close to the target.

 Gathering of sensory data is determined by transmission rate,
transmission range, quantity, quality, energy and real time
constraints.

 There is priority of selecting sensory data types (for example,
audio vs. visual) based on mission objectives, threat level, etc.

 Ground sensors transmit raw data with small data rates

 UAVs can transmit processed data that may have been
analyzed by the UAV systems or at the Command Station.

 Sensor Suite

 Depends on mission requirements

 expeditionary missions to discover hidden hostiles under
cover and slow moving targets

 UAV sensors: visual, audio, infrared

 Ground sensors: motion, chemical, possibly sonar

 reconnaissance missions to passively gathering data

 UAV sensors: long-range visual, infrared, radar

 Ground sensors: audio, possibly visual

 surveillance missions to monitor behavior of people, objects,
or processes in large region

 UAV sensors: visual, infrared

 Ground sensors: motion, audio, possibly visual

Platform characteristics improvement

 UAVs: onboard processing and communication capabilities.
Adaptive hardware and software to the mission objectives.
Associative processing to enable real time identification and
recognition.

 Ground sensors: Minimal computation and communication.
Very low energy consumption, possibly energy scavenging.

 Troopers: Low power processing and passive communication
capability.

Validation and experimentation

 There is need to collect real time data in simulated scenarios
that closely relate to real scenarios.

 All key actors in an expeditionary scenario, the troopers, the
UAVs and the ground sensors, should interplay to collect real
data.

 Data capture capability for post mission analysis.

Real time information management

 Troopers: management of sensory data received by their own
sensors and ground sensors. This involves prioritization of
sensories and weighting their responses.

 For example, a motion signal from a ground sensor may
reinforce an infrared image from the trooper sensor to decide
about a target.

 UAVs: More sophisticated data management and analysis in
real time.

 imaging

 sensory pattern recognition

 adaptive pattern training

 Ground sensory

 Low level data recording

 Raw data transmitted with low data rates

Sensory inter-operation

 A key issue of sensory inter-operation is how and where to
evaluate sensory data in real time.

 We propose that the initial evaluation be done by the UAVs.
Patterns of diverse sensory data could be weighted to provide
a real time response.

 Sensory patterns could be recognized by adaptation and
(off-line) training based on data from previous missions.
(More details to follow).

 All unresolved information would be sent to command center
for expert decisions with time delay penalty

Approach: UAV Centric

UAV Scheme

to Assist

Trooper

Operations

Hierarchical System Concept

 Operation level 1: Local evaluation

 UAVs collect sensory information from their sensors and the
ground sensors concerning the target

 UAVs process and evaluate the data in real time to locate and
identify the target and threat level

 UAVs transmit a response to the troopers and/or command
center

 Operation level 2: Remote analysis

 For deeper analysis, UAVs communicate with the central
command in real time. A feedback received is transmitted to
the troopers.

 A key property is the adaptation and learning capability of the
UAVs based on associative processing to provide responses in
real time.

UAV on-board architecture

 Onboard associative storage
of training functions

 Adaptive recognizer of
patterns and images through
sensors

 Reconfigurable processor
 I/O interfaces and sensors

 Associative memory
technology can be applied to

 Sensory Processing

 Adaptive Recognizer

Key Attributes of UAV-Centric Scheme

 All UAV subsystems as well as command center will benefit
from large associative memories, specifically

 UAVs: efficient real time response

 Cognitive imaging
 Sensory learning
 Collaborative training

 Command: computation intensive

 Preference learning – Neural Classifiers
 Query system

 Associative memories and reconfigurable processors are
enablers for sensory and cognitive technology on UAVs.

Expeditionary Application

On-board UAV Operations

Onboard UAV Function Modules

 Our approach builds on several on-board function modules to
assist the troopers and central command by preprocessing
information, correlate corrected data, and preliminary
association with existing knowledge.

 These three tasks undergo evolutionary learning processes
during online operation, or in offline training sessions.

Offline UAV training process

 Hierarchical training modules

 Training sensory features on distinct sensor modules in the UAV

 Preferential training module

Online/Offline Evolutionary Learning

 Evolutionary neural process learning employs a neural
network training and mapping approach between input and
output representations via an evolutionary learning algorithm.

 Evolutionary learning supports online training during realtime
application and offline training during traditional training
sessions

 Evolutionary learning augments UAV functions as follows:

 Adaptive data processing

 Multi sensory information management

 Associative recognition

 Sensory Associative Memory

 Our learning and training scheme employs a three phase
associative memory process:

 Sensory data transformations

 interfusion of sensory transforms

 associations and approximate recall

 All three phases use evolutionary neural network processing
to perform their internals

 Adaptive Sensory Data Pre-processing

 Heterogeneous sensors pre-process raw data using distinct
adaptive modules on the UAV

 High level features of information are extracted from raw
sensory data, i.e. Fourier, wavelet

 Other information can be preferential rather than traditional
math-based. This is achieved with evolutionary preferential
neural process learning.

Phase 1 - Sensory preprocessing

a) pre-processing filters,

b) high level feature extractors,

 Feature vector fk represents data of Sensor-k

Multi Sensory Information Fusion

 Extracted high level information from sensors are merged into
a single vector stream

 Merging uses statistical parameter, e.g. mean, weighted
average, etc

 Merging can be biased with existing knowledge rather than
standard unbiased statistical parameters. This is achieved
with evolutionary bias neural process learning.

Phase 2 - Interfusion

Inputs Feature vectors

Output Signature vector
representing sensory data

 g k = (b k ; w k)

 b k = (f 1k ... f sk)

Phase 3: Associative Recognition

 Associative recognizers measure statistical similarity or
difference between merged information and stored
associative memory data

 Similarity measures determine the association matching
levels between the merged information and stored data

 Often in practice, similarity measures in real association are
not mathematically well defined. This is achieved with
evolutionary undefined neural process learning.

Evolutionary Training Scheme

 key advantage

 neural net structural evolution

 training data enrichment

 The training scheme consists of of three nested processes

 a) coefficient training process (inner loop),

 b) structural evolution process (middle loop) and

 c) training data enrichment process (outer loop),

Training

 The coefficient training process (inner loop) is a variation of
the back propagation algorithm using adaptive learning rates
to accelerate convergence

 The structural evolution process (middle loop) evolves the net
structure to improve accuracy

 The training data enrichment process (outer loop) explores
and enhances the input-output training data space efficiently.
This helps to further improve the output accuracy and
convergence

Data Enrichment Process

 Properties

 Addresses the multi-label and imbalanced data problem.

 Manipulates the imbalanced data by sub-sampling into more
balanced data.

 Iteratively updates the sub-sampled data through the training.

 Improves the generalization performance of the training net.

 Differences

 Multi-label & imbalanced data problem addressed by ONE net.

 Unique data selection technique to improve classifier training.

 Avoids sparsely data distribution assumption.

 No prior knowledge required.

Enrichment Initialization

 Enrichment Initialization re-samples the available imbalanced
training data to create a subset of more balanced training
data for first time neural net classifier training.

 Steps

 Select a number of initial clusters, g

 Cluster training data into g clusters

 Select equal number of data from each cluster as active
training set

Enrichment Initialization

Enrichment Update

 Enrichment Update incrementally adds and removes training
data to/from the active training set at the end of an
enrichment training iteration.

 Steps

 Train neural net with the active training set.

 Separate the active training set into 2 groups with respect to
their errors.

 Add neighbors for high-group and remove half of low-group.

Enrichment Update

Enrichment Termination

 Enrichment Termination controls the enrichment process to
iterate for a pre-set number of enrichment training iterations.

 Steps

 Check if the enrichment process repeats for a pre-set number
of iterations.

 If NO, repeat Step 2. Otherwise, stop.

Experimentation: Robot arm controller

Left: sampled data with inputs
(Angle, Gain) and expected
output (Internal State, i.e.
rotate left, rotate right, idle).

Right: same sampled data with
three distinguished expected
states, illustrating multi-label
imbalanced data problem

Metrics

 True-Positive: classification result is confirmed as correct
known label.

 False-Positive: classification result is miss-classified as
different known labels.

 Control Accuracy (Ac): the percentage of accepted classified
state in the sampled data.

 Control Error (Ee): the Euclidean distance between estimated
control state and the sampled state in training data.

Advantages

 Data Enrichment supports neural network classifier in both
linearly separable and non-linearly separable cases.

 Data Enrichment improves the neural network training
yielding better trained network than conventional techniques.

 Data Enrichment reduces the time required to train a neural
network for multi-label and imbalanced data.

Some Results

 Training repeats for 4 updates

 Step1: Enrichment Initialization

 Step2: Enrichment Update

 Step3: Enrichment Termination

Non-Linear Data Example

Status

 Theoretical model of the three-phase sensory cognitive
processing scheme for training and operational mode

 Evolutionary Training of the cognitive processor including self-
modification of the NN structure and augmentation of
additional training data

 simulation for NN coefficient weights training

 simulation for the NN structural modification

 simulation of data enrichment process

 Needs:

 Controlled scenario for testing and verification of the cognitive
processing scheme with realistic information

 We will move the simulation to FPGA prototype

Assumptions on Existing Technologies

 We assume the following technologies already exist or are in
process of development

 Communication and transmission technologies portable for
short- and long-range

 Power and energy efficient devices for all sensory units

 Troopers equipped with sensor technologies

 Networking technologies for effective sensor communication
and processing

 small, reliable UAVs

Applications to UAV Missions

 Consider a reconnaissance mission

 Sensory transform phase maybe embedded in low flying
 mini UAVs to collect and process diverse sensory data

 Another UAV, possibly a master at higher altitude, may
perform data interfusion

 Depending on the application mission, the master UAV may
also perform data associations and matching in real time. An
associative memory should be included in the master UAV

 However, if associations sizes are large, the master UAV may
contact the central command which can perform intensive
associations for matching

