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 On board Information processing

 Main Technologies

 Digital Signal Processors  -  DSP

 Reconfigurable Computing, FPGAs

 Embedded processing

 Self Reconfigurable processing

 Evolvable Hardware



Onboard  UAV  Operations



Onboard Processing Requirements

 Computational Performance

 sufficient to accomplish complex imaging algorithms

 Low power and Low Energy

 management of circuitry, architecture

 Minimal physical characteristics

 packaging, weight

 Communication Performance

 antennas, digital soft radio, protocols

 Storage 



Key Component Technology

 Digital Signal Processors,  DSPs

 Reconfigurable processors,  FPGAs

 Embedded processors 



Digital Signal Processors  (DSPs)



What  are DSPs ?

 Embedded microprocessors that are designed to handle 
digital signal processing applications in a very cost effective 
manner

 Current market leaders:

     TI, Motorola, Lucent

 Market well over - $ 50 Billions



Nature of DSPs

 DSPs  utilize special hardware to meet performance,  power, 
and price points

  Sacrifice orthogonality and ease-of-use to meet goals

   Assume hand-assembly or libraries used for core  algorithms

  Compiler mostly used for control and glue logic



DSP principle

 Converting a continuously changing waveform (analog) into a 
series of discrete levels (digital)



DSP principle

 The waveform is sliced into equal segments and the 
amplitude is measured in the middle of each segment

 The measurements make up the digital representation of 
the waveform
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ADC  and  DAC

 ADC:  analog conversion to digital

 DAC:  digital conversion to analog

 Both operations are approximate as the waveforms do not 
completely match  - filtering needed to smooth them out 



DSP algorithms

 Basically various filtering type of algorithms

 FIR:  finite impulse response

 IIR:  infinite impulse

 Bandpass filter

 AR:  autoregressive



FIR filter

 Most widely used filter

 series of delays, multipliers, and adders

 frequency response output fine-tuned to filter's length



DSP - Architecture Characteristics

 DSP architecture is designed to solve one problem well

 Digital filters (FIR, IIR) and FFTs

 In Real-Time

 Architecture features added to speed up this problem

 MAC:  multiply & accumulator, speedup FIR tap

 Circular buffer: speedup shifting FIR delay registers

 RISC based: single clock per instruction

 Harvard Architecture: separate instruction & data

 Word oriented



DSP characteristics

 Disadvantages:  not a general purpose computer

 slow character processing

 No multi-user operating system support

 No virtual memory, no translate lookside tables

 No memory page protection (Read, Write, Execute)



FIR filter architecture

 Example



FIR on typical processor

 simple assembly FIR  routine



Early DSP architecture

 simple datapath and memory structure



Typical architectures

Harvard architecture was coined to 
describe machines with separate 
memories.
Speed efficient:  Increased parallelism.

instructions data

ALU I/OALU I/O

instructions

and

data

Data busAddress bus

Von Neuman architecture
Area efficient  but requires higher bus 
bandwidth because instructions and 
data must compete for memory.



FIR filter on conventional DSP

Use of dot product

Do dotprod UNTIL CE;

dotprod:

    MR = MR + MX0 * MY0 (SS), 

    MX0 = DM(I0,M0), 

    MY0 = PM(I4,M4);



Baseline DSPs

 Common attributes

 Arithmetic:  16 or 24-bit  or even 40-bit fixed point (fractional), 
or 32-bit arithmetic operations

 Instructions:  16-, 24- or 32-bit instructions

 Issue:  one instruction per cycle, single-issue

 complex, compound instruction encoding, many operations

 highly constrained, non-orthogonal architecture

 dedicated addressing hardware

 specialized addressing modes



Baseline DSP 

 attributes (cont)

 on-chip memory architecture

 dedicated hardware for loops and other execution control

 on chip peripherals and I/O interfaces

 low cost, low power, low memory usage



Increasing Parallelism

 Boosting performance beyond faster clock speeds requires the 
processor to do more work per cycle

 Two ways to increase the processors' parallelism:

 Increase the number of operations  that can be performed in 
every cycle

 increase the number of  instructions  that can be issued and 
executed in every cycle

 this leads to pipelining and parallelism



More Operations per instruction

 How to increase the number of operations performed in each 
instruction?

 Add execution units (multiplier, adder,  i.e.  add hardware)
 enhance the instruction set to take advantage of extra hardware
 Possibly, increase the instruction word length (width) 
 Use wider buses to keep the processor fed with more data

 Add SIMD capabilities  -   data parallelism



Architectures for DSPs

 Enhanced conventional DSPs

 Lucent DSP16xxx, ADSP 2116x

 VLIW (Very Long Instruction Word) DSPs

 TI TMS320C6xxx, Siemens Carmel, Philips Trimedia

 Superscalar DSP

 ZSP ZSP164xx

 Hybrid processors

 PowerPC with Altivec Hardware, TriCore



Example



Enhanced conventional DSPs

 More parallelism via:

 Multi-operation data path
 e.g., 2nd multiplier, adder
 SIMD capabilities

 Highly specialized hardware in core
 e.g., application oriented datapath operations (crypto)

 Co-processors
 Viterbi decoder, FIR filtering, mpeg7, etc



SIMD  –  single instruction multiple data

 Split words into smaller chunks for parallel operations

 Some SIMD processors support multiple data widths, such as 
16-bit, 8-bit,...)

 For example, Lucent DSP16xxx, ADI ADSP 211x



Challenges to SIMD

 Algorithms, data organization must be amenable to data 
parallelism

 Programmers must be creative, pursuing alternatives

 Reorganization penalties can be significant

 SIMD most effective on algorithms that process large blocks of 
data



More Instructions per clock

 How to increase the number of instructions issued and 
executed in every clock cycle?

 Use VLIW techniques  
 static scheduling

 Use Superscalar techniques  
 dynamic scheduling



Superscalar  vs  VLIW:  scheduling



VLIW concept



VLIW Application

 FIR filter loop 



Evaluation

 Advantages

 performance

 regular structure

 easier to program – depending on tools

 Disadvantages

 difficult tools  -- compilers/schedulers

 deep pipeline latencies

 code size explosion

 higher power consumption



Superscalar  DSPs

 Characteristic

 hardware support for instruction control

 2-4  instruction issue per cycle

 lots of parallelism

 Example FIR filter

 All four instructions exec in parallel



Evaluation

 Advantages

 performance

 easier tools  -- compilers

 smaller code size

 Disadvantages

 dynamic behavior complicates software development

 execution time unpredictability

 high energy consumption 



Hybrids

 Typical approach:  Embedded DSP and microcontrollers

 heterogeneous multi-core systems including 
 Regular processor cores
 DSP co-processors
 Advanced cryptoprocessors

 Design methods

 tweaking a GPP with DSP support, or

 tweaking a DSP with some microcontrol support, or

 entire new design from scratch



Example:   TI   OMAP Hybrid  Processor



Reconfigurable  Processing



Reconfigurable Processing

 Ability of a device to change its internal structure, 
functionality, and behavior, either on command,  or 
autonomously.

 Two methods for execution of algorithms:

  hardwired technology:  high performance

  software-programmed microprocessors:  high flexibility

 A third approach:   Reconfigurable computing                           

 intended to fill the gap between hard and soft, achieving 
potentially much higher performance than software, while 
maintaining a higher level of flexibility than hardware



Reconfigurability  Classes

 Static  Configuration:   performed while device is off line.

 Dynamic  Configuration:   device is on-line, "on the fly".

 Self Reconfiguration:    performed autonomously by device.

 Evolution  type:   Self Reconfiguration with adaptation such as 
replication and growth,  "bio-inspired". 



Reconfigurability  Spectrum

Fixed HW

Reconfigurable

Self 
reconfigurable

Evolvable

Flexibility,  
Fault Tolerance

Generation

1st 4th3rd2nd



Reconfigurable  Logic

 Currently implemented by FPGAs

 Static reconfiguration is achieved by downloading into the 
FPGA chip a new configuration  while the FPGA is off-line

 obvious disadvantages in configuration time



 Traditional  FPGAs 



Static  Configuration



Dynamic Configuration

 It is achieved by inserting new FPGA functionality on the fly, 
i.e. while the chip is active

 Certain areas of the device can be reconfigured while others 
remain unaffected

 In practice,   partial configuration is used to achieve run-time  
dynamic reconfiguration

  Xilinx Virtex families

  Altera FPGAs

  Atmel, etc. 



Partial Configuration styles

 Module based:  distinct portions of the design (modules) that 
can be reconfigured separately (Bus Macros)

  independent modules

  communicating modules

 Difference based:  making small design changes in local areas 
e.g. LUTs,  block RAMs,  but not routing



Virtex II  Architecture

 CLBs,  Block RAMs, Config Columns



Module-based Partial Configuration



Bus  macros

 Connecting reconfigurable and fixed modules in partial 
configuration maps 



Major Constraints

 Size and position of a module can not be changed

 Modules can communicate only with neighbors

 No global signals are allowed except clocks

 I/O blocks exclusively accessed by adjacent modules



Difference-based Partial Configuration

 Small changes on the FPGA configuration 

 Manually done, usually via an FPGA Editor 

 What can be modified? 

 LUTs equations 

 BRAM contents and BRAM write modes 

 I/O standards and pull-ups or pull-downs on external pins 

 Flipflop initialization and reset values, 

 What cannot be modified? 

 Routing,  very dangerous:  internal contentions



Self  Reconfiguration

 A second way for dynamic reconfiguration: 

 The chip modifies its own configuration  based on peripheral 
or internal signals 

    This may occur 

  under command, or 

   autonomously

 This idea leads to the concept of  Self  Reconfiguration



Why Self Reconfiguration ?

 Ability to operate  autonomously  in remote,  challenging and 
hostile environments

 Perform on-board processing and communication

 Variability of function and operation modes

 Quick response to changing ambiance



Potential Self Reconfiguration Apps

 Space exploration probes

 Military & commercial 
satellites

 UAVs  and  µ UAVs

 deep underwater rescue 

 nuclear or chemical plants

 autonomous robotics



Key Issues of Self Reconfigurable architectures

 Autonomy

 Real time response

 Low power and energy consumption

 Reliability



About UAVs:  Rationale 

 Increasing need for flexible embedded processing on board a 
variety of aerial vehicles especially µUAVs.  

 To perform their mission,  µUAVs need unconventional on 
board processing capabilities:

 Performing multitude of computationally intensive functions

 Operating autonomously, adapting from one input to another

 Meeting low power and reliability requirements



Rationale (cont)

 Reconfigurable processors based of FPGAs have two traits:  
flexibility and parallel processing.  

 However, FPGAs lack autonomous adaptation capability while 
suffering from power consumption. 

 Clearly, mini aerial vehicles, e.g. satellite sensors and µUAVs,  
need  autonomous, adaptable and dynamically reconfigurable 
processors, beyond conventional FPGAs.



Sensor Web Scenario

Communication 
Tradeoffs  

  Bandwidth =

   Buffer/Latency,

  Data Rate,

  Protocol,

  Error Bit Rate



Self Reconfiguration Approach

 Novel autonomous, adaptable and and self reconfigurable 
system has been proposed consisting of 2 basic units:

 Adaptation software manager

 Dynamic reconfigurable hardware fabric

 The approach is based on the twofold concept:          
adaptation of the application software coupled with      
dynamic reconfiguration of the hardware.



Approach (cont)

 Architecture:  reconfigurable at four Layers:

   Layer 4:   the Adaptation Manager.

   Layer 3:   the Real-Time Operating System RTOS.  

   Layer 2:   the Embedded Processors   and Memory. 

   Layer 1:   the Reconfigurable Hardware Fabric. 



Architecture:   Non Traditional Reconfigurable



Reconfiguration  Strategy   

 Occurs at several levels:

 Selection of  application modules by the Adaptation Manager. 

 Mapping of modules into the hardware fabric or the embedded 
processors, depending on performance requirements.  

 Configuration of the hardware fabric and the embedded 
processor to meet performance and data delivery 
requirements.

 The reconfigurable hardware is essential for mapping of 
communications algorithms such as :  

 IR filtering,  

 multichannel CDMA, 

 complex encoding, 

 advanced imaging.



Adaptation manager

 The adaptation manager captures real time sensor inputs and 
interacts with the Function Libraries.

 The Libraries store pre-built configurations for application 
functions 

 The manager decides on which configuration to be fed into 
the hardware fabric. 

 The manager also involves a software learning process to 
adapt configuration decisions.



Self Adaptation  -  Dynamic Configuration



Reconfigurable Fabric

 The reconfigurable fabric consists of a number of processing 
tiles each having capability of dynamic reconfiguration

 Tiles are equipped with regularly structured functional units 
capable of operation level parallelism. 

 Tiles can be hierarchically assembled at several levels using 
dynamically interconnected switch-buffer matrices.  

 Distributed buffer memory

 Configuration can be achieved within a tile, and along several 
interconnected tiles.

 This approach provides good scalability, growth and fault 
tolerance.



Reconfigurable Fabrics and Tiles



Reconfigurable Tiles



Core Switch Matrix



Self  Reconfigurable  and  Evolvable Systems

 There is an overalap between the two concepts

 Self reconfiguration operates in real time  

 Evolvable reconfiguration implies self-growth and replication 
of the reconfigurable hardware at slower pace.  

 Evolvable hardware use bio-inspired approaches and may 
need technologies not based on CMOS. 



Evolvable Hardware 

 Evolvable Hardware, EHW, is capable of on-line adaptation 

 EHW can change its architecture and behavior dynamically 
and autonomously, either through software or by directly 
morphing the hardware. 

 At present, EHW use evolutionary algorithms or genetic 
algorithms as their main adaptive mechanism.  However, 
other techniques are possible such as Neural Networks. 



Evolvable:   Inspiration from Nature



Evolvable Hardware Classes

 Extrinsic EHW:  simulates evolution by software and only loads 
the best configuration to hardware in each generation.

 Intrinsic EWH:  simulates evolution directly in hardware.

 Most evolution approaches are extrinsic or off-line types



Evolutionary design and adaptation of circuits



Evolutionary design:  extrinsic - intrinsic



Genetic Evolutionary Operations

 Selection

 Crossover

 Mutation

 Use an Objective or Fitness function



Principles of Evolution

 Coding solutions as chromosomes.  

 Operating on code, not solutions.  

 A string is a candidate solution.



Evolutionary implementation 

 Current approaches to EHW implementation:

 use powerful compute engines to run GAs for evolution

 use reconfigurable HW or FPGAs to load evolved HW

 Requires:  

 fast evaluation

 low cost for failure

 Future:   everything should be seamlessly integrated in HW



Where is Hardware Evolution ?



Some examples:   evolving an FPGA design



Is it practical ?

 For most practical real world problems, human designers plus 
tools still outperform evolution

 However,

 Hardware evolution does have some niche applications



Adaptive  Systems 

 Evolution  +  Reconfigurable Hardware  =  Real-time Adaptation

 Can adapt autonomously to changes in environment  

 Useful when real-time manual control not possible   

  E.g. spacecraft systems (sensor processing) 

 Non-critical systems are more suitable   

 E.g. data compression systems   

 plant power management   

 ATM cell scheduling



Traditional vs. Evolutionary Search

 Traditional design decomposes from the top down into known 
sub-problems 

 Applies constraints to ensure design behaves like known sub-
problems 

 Evolution works from the bottom up 

 Evolution uses fitness to guide performance 

 Not directed by prior knowledge 

 Oblivious to complexities of the interactions within the circuit



Innovative  Circuits

 Circuits that could not be found using traditional design 
abstractions are innovative 

 Solution may have high performance 

 May use less gates that traditional designs 

 Analysis shows internal non-digital behaviour

 Examples:  evolvable multiplier, adder



Traditional vs Evolvable Multiplier

Traditional =  26 gates                                           Evolved =  21 gates + 7 MUXes



Application Examples of custom EHW



Evolved Antennas



EHW vs. Neural Networks  (NN)



EHW vs.  Self Reconfigurable,  again

 Key issue:   real time efficiency

 Self reconfigurable hardware requires fast responses whereas 
Evolvable HW is still slow paced

 Combining the two is important for future applications



Layered approach to EHW/Self Reconfigurable

 Key feature:  interaction and coordination of two basic entities

 evolvable adaptation software

 dynamic reconfigurable hardware

 We could have used an evolution-based approach to design 
both units, i.e.  the manager and the fabric.  However,

 An Evolvable Hardware fabric would ultimately require 
unconventional hardware, not yet available.

 The Evolvable Manager uses a software approach based on  
Neural Net learning technique to evaluate and perform 
adaptation of application functions



Self Adaptation  -  Dynamic Configuration



Evolvable Adaptation Model

 Evolvable hardware model consists of two interacting 
components

 dynamic reconfigurable hardware and 

 a neural network

 The idea is to achieve evolution in the hardware by evolving 
configuration candidates via the neural network and testing 
them for fitness.



Evolvable  Platform



Evolution Modes

 Operation mode:  Neural Net (NN)  generates configuration 
code

 Training mode:  NN incrementally evolves configurations by 
training itself on input stimuli as well as configuration data 
that are recurrently applied after being improved by genetic 
operations.

 Other evolution modes e.g. self-diagnosis and self repair are 
also feasible.



Training

 During training, candidate configurations are selected from a 
population via genetic operations.  

 Training continues until a candidate passes a fitness test 
depending on responses from the reconfigurable fabric. 

 Training may start on command or autonomously, in new 
environment, new functions or upgrading for better 
performance.

 A major aspect of this scheme is to design a robust training 
mechanism for configuration evolution of the dynamic 
reconfigurable  fabric.



Evolvable  Hardware  Training



Summary  and  the  Future

 Self reconfigurable and evolvable systems have the potential 
to be an important  future technology especially for avionics 
and space infrastructure.

 EHW based on bio-inspired paradigm using GAs and software 
simulation off-line to evolve and discover hardware.

 This is fine in slow growth and self paced evolution but not in 
real time.

 In the future, there is need to integrate seamlessly Evolvable 
software with Neural Network techniques into dynamic 
reconfigurable hardware platforms.
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Motivation:  Autonomous UAVs

 UAV scenarios

 Civilian and Military applications

 Threat assessment, rescue & recovery, reconnaissance

 UAV real time info flow 

 Queries and Inquiries to UAVs

 Sensory signal processing

 Feature processing

 UAV Response feedback

 Networking UAV 



Autonomous  UAV  Scheme



Autonomous UAV Real Time Requirements

 Queries and Inquiries to UAVs

 Autonomous & Hierarchical Cognitive Learning

 Image processing

 Master/Slave UAV organization

 Networking formations and UAV collaboration

 Mission strategies



System Concept



System Concept (cont)

 The system architecture and methodology manages the real-
time information flow between CC and the Master UAV.

 A key property is the adaptation and learning capability of the 
Master  in order  to respond intelligently to CC queries.



System Architecture

 A central command control 
(CC) communications center 
interacts in real time with a 
Adaptable  Mobile Agent 
(AMA) on the Master UAV.

 The Master collects sensory 
information.

 CC evaluates feedback,  
accepting or  modifying it. 

 CC resends query and 
updates its database.



System Architecture Information Flow

 CC prepares queries for the 
Master

 Master processes queries 

 knowledge base

 sensory data

 CC evaluates feedback,  
accepting or  modifying it 

 CC resends inquiry and 
updates its database 



System Architecture information flow

 System Architecture 
processes the information 
flow for an inquiry session 
between CC and the 
Master.

 Queries operations may 
involve:

 Processing & analyzing 
“existing” knowledge 

 “Augmenting” the 
knowledge base



System Architecture information flow (cont)

 Adaptive Query Learning:

 Due to rejections or 
otherwise unsatisfaction of 
CC's evaluation of result

 Incremental Sensory 
Adaption & Learning:

 Preloaded Master with 
sensory knowledge (i.e. 
High altitude video)

 Independently of its current 
mission, the Master is 
updating it's sensory



Inquires

 A key element of the CC is an inquiry processor which 
transforms user inquiries into formal queries for the AMA.

 An inquiry consists of a number of phrases that resemble a 
restricted natural language specifically

 Consists of an <action>, <qualifiers> and a single <object>.



Inquires:  Feature Qualifiers

 For example, “find preferred in Ohio landing area”

 where 

<action> is “find”; 

<qualifiers> are “preferred” &  “in Ohio”

and <object> is “area”.

 Feature Qualifiers are characterized by a particular trait which 
exhibits a fuzzy description such as “good” or “preferred”.

 For example, “preferred” has a method describing the human 
meaning into low level terrain sensory features, e.g. 
“clearance”, “roughness”, etc.



Prolog

 Declarative Language

 Declarative Clause Grammars, DCG

 Straight forward mapping to parallel hardware technologies

 Al-based goal searching and Pattern Matching

 Image processing and object recognition

 Optical technologies

 Formulate logical database queries

 Natural-like language processing

 Biophotonics technologies

 Associative memories



Queries

 A formal query is a symbolic expression which can be 
described by Prolog's Declarative Clause Grammar (DCG).

 For example, the CC Inquiry

 find preferred in Ohio landing_area

 becomes transformed the AMA query fro the Master UAV:

 find ( clearance > 7 and roughness > 8)  and in Ohio 
landing_area

 Feature qualifiers require offline and online learning by using 
a combination of supervised learning (i.e. Neural Nets) and 
fuzzy system descriptions.



 Feature Training Strategies

 Hierarchical training modules

 Sensory features on distinct sensor modules on Master UAV

 Preference training module

 Two levels of Learning

 Adaptive feature learning

 Preference-based learning

 Inquiry:   find preferred in Ohio landing_area

 Query:    find ( clearance > 7 and roughness > 8)



Master UAV architecture

 Adaptive recognizer of 
patterns and images through 
sensors

 For Features & Preferences

 Reconfigurable processor

 On board Library of training   
functions

 I/O interfaces and sensors



UAV Training Process

 Hierarchical training modules

 Training sensory features on distinct sensor modules on UAVs

 Preference training module 



Training Strategy



Training strategies

 Master:

 Filtering for each parameter data type

 Parameter sensory training based on query preference

 Trained data collected into one feature vector

 Central station (CC):

 Similar to Master but operating on simulated data 

 Software filtering

 feature vector data at the Central  derived by simulations using 
the training knowledge from the Master.



 Query processing:  Master

sensory trainer is stored in the local knowledge base

query execution process real-time data from the local sensors.



Query processing:  Slave

Slave UAVs organized into fleets to collect multiple data

Collaborative trainer:  resolving inconsistencies from multiple UAV data.



Key issues in Master (AMA)

 Associative memories and processors is an enabler 
information technology

 All Master subsystems will benefit from large  associative 
memories

 Command and Control, CC

 Inquiry system  –  Prolog engine

 Preference Learning  –   Neural Network Classifier

 Adaptable Mobile Agents, AMA

 Query learning – Supervised Learning, Fuzzy Logic

 Cognitive Image Recognizer – Unsupervised Learning

 Sensory Learning – Supervised Learning



Key Attributes in UAV Scheme

 All UAV subsystems will benefit from large  biophotonic 
associative memories, especifically

 Command and Control

 Query system  –  Prolog engine

 Preference Learning  –   Neural Network Classifier

 Master UAV

 Cognitive Image Recognizer

 Sensory Learning

 Slave UAVs

 Advanced imaging  –   wavelets 

 Collaborative learning

 Associative memories and processors are enablers for 
information technology on UAVs



Example:  terrain landing



Feature properties



Cluster Charaterization



Query examples and answers



Conclusions

 System Architecture and methodology to manage the massive 
information flow and inquires between CC and AMA in 
realtime.

 Bio-inspired learning techniques are needed for query and 
inquiry processing for feature qualifiers and preferences.

 Bio-inspired learning are needed for pattern recognition of 
sensory information.

 Prolog, optical and biophotonic technologies are needed for 
processing realtime massive information flow.
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Distributed Sensing Concept

Three coordinating sensory networks:  ground sensors,  UAVs, trooper sensors



Expeditionary  Operation

 Three distributed sensory networks

 ground sensors

 UAV sensors

 trooper sensors

 The trooper sensory is normally operating in passive mode, 
i.e. avoiding transmissions while receiving data from UAVs 
and ground sensors.

 UAV sensors coordinate with the ground sensors to track 
information about the target.  This information is transmitted 
to troopers.

 The ground sensory consists of  redundant heterogeneous  
sensors that are dispersed en masse to monitor targets.  



Ground Sensors

 Sensors are heterogeneous, redundant and disposable.  

 They are  self-organized by their monitoring threat identity 
types:

 Motion

 Sound

 Imaging (infrared)

 Proximity, location

 Chemical, bio, radiation

 Ground sensors communicate point-to-point with other sensors

 Ground sensors  normally operate in passive monitoring mode. 
They are activated by the UAVs for transmission.  



UAV Sensors

 UAV sensors are equipped with long-range communication 
devices.  They respond to ground sensory, troopers and other 
UAVs.

 UAVs may be organized in hierarchical network formations, i.e. 
master UAVs and lower flying mini UAVs.

 Possible intelligent information and threat discovery by UAVs

 Threat identity

 threat coordination

 Overall threat assessment

 Threat pattern tracking

 Information bridge between troopers, ground sensors and 
distant command station.



Trooper Sensors

 Trooper sensors are carried on soldiers to retrieve information 
normally from the UAVs, occasionally the ground sensors and 
in emergency the command center

 Characteristics

 Support information retrieval and interpretation

 Support coordination among trooper sensors  

 Passive sensory: mostly receiving 

 Threat avoiding and/or safe threat practice for safety of 
troopers



Data Gathering Principles

 Troopers gather data from their own sensors and from nearby 
sensory assets, i.e.  UAVs  and ground sensors.  Sensory data 
is relayed all the way from assets located close to the target.

 Gathering of sensory data is determined by transmission rate, 
transmission range, quantity, quality, energy and real time 
constraints.

 There is priority of selecting sensory data types (for example, 
audio vs. visual) based on mission objectives, threat level, etc.

 Ground sensors transmit raw data with small data rates 

 UAVs can transmit processed data that may have been 
analyzed by the UAV systems or at the Command Station.



 Sensor Suite

 Depends on mission requirements

 expeditionary missions   to discover hidden hostiles under 
cover and slow moving targets

 UAV sensors: visual, audio, infrared

 Ground sensors: motion, chemical, possibly sonar

 reconnaissance missions  to passively gathering data

 UAV sensors: long-range visual, infrared, radar

 Ground sensors: audio, possibly visual

 surveillance missions  to monitor behavior of people, objects, 
or processes in large region

 UAV sensors: visual, infrared

 Ground sensors: motion, audio, possibly visual



Platform characteristics improvement

 UAVs:  onboard processing and communication capabilities. 
Adaptive hardware and software to the mission objectives.   
Associative processing to enable real time identification and 
recognition.

 Ground sensors: Minimal computation and communication.  
Very low energy consumption, possibly energy scavenging.  

 Troopers:  Low power processing and passive communication 
capability.



Validation and experimentation

 There is need to collect real time data in simulated scenarios 
that closely relate to real scenarios.   

 All key actors in an expeditionary scenario, the troopers, the 
UAVs and the ground sensors, should interplay to collect real 
data.  

 Data capture capability for post mission analysis. 



Real time information management

 Troopers:  management of sensory data received by their own 
sensors and ground sensors.  This involves prioritization of 
sensories and weighting their responses.  

 For example, a motion signal from a ground sensor may 
reinforce an infrared image from the trooper sensor to decide 
about a target.

 UAVs:  More sophisticated data management and analysis in 
real time.

 imaging 

 sensory pattern recognition

 adaptive pattern training

 Ground sensory 

 Low level data recording

 Raw data transmitted with low data rates 



Sensory inter-operation

 A key issue of sensory inter-operation is  how and  where  to 
evaluate sensory data in real time.  

 We propose that the initial evaluation be done by the UAVs.  
Patterns of diverse sensory data could be weighted to provide 
a real time response.  

 Sensory patterns could be recognized by adaptation and     
(off-line) training  based on data from previous missions.   
(More details to follow).

 All unresolved information would be sent to command center 
for expert decisions with time delay penalty



Approach:  UAV Centric

UAV  Scheme

to Assist

Trooper

Operations



Hierarchical System Concept

 Operation level 1:  Local evaluation

 UAVs collect sensory information from their sensors and the 
ground sensors concerning the target

 UAVs process and evaluate the data in real time to locate and 
identify the target and threat level

 UAVs transmit a response to the troopers and/or command 
center

 Operation level 2:  Remote analysis

 For deeper analysis, UAVs communicate with the central 
command in real time.  A feedback received is transmitted to 
the troopers.

 A key property is the adaptation and learning capability of the 
UAVs based on associative processing to provide responses in 
real time.



UAV on-board architecture

 Onboard associative storage 
of training functions

 Adaptive recognizer of 
patterns and images through 
sensors

 Reconfigurable processor
 I/O interfaces and sensors

 Associative memory 
technology can be applied to

 Sensory Processing

 Adaptive Recognizer



Key Attributes of UAV-Centric Scheme

 All UAV subsystems as well as command center will benefit 
from large associative memories, specifically

  UAVs:   efficient real time response

 Cognitive imaging
 Sensory learning
 Collaborative training

 Command:  computation intensive

 Preference learning – Neural Classifiers
 Query system

 Associative memories and reconfigurable processors are 
enablers for sensory and cognitive technology on UAVs.



Expeditionary  Application



On-board UAV Operations



Onboard UAV Function Modules

 Our approach builds on several on-board function modules to 
assist the troopers and central command by preprocessing 
information, correlate corrected data, and preliminary 
association with existing knowledge.

 These three tasks undergo evolutionary learning processes 
during online operation, or in offline training sessions.



Offline UAV training process

 Hierarchical training modules

 Training sensory features on distinct sensor modules in the UAV

 Preferential training module



Online/Offline Evolutionary Learning

 Evolutionary neural process learning employs a neural 
network training and mapping approach between input  and 
output representations via an evolutionary learning algorithm. 

 Evolutionary learning supports online training during realtime 
application and offline training during traditional training 
sessions

 Evolutionary learning augments UAV functions as follows:

 Adaptive data processing

 Multi sensory information management

 Associative recognition



 Sensory Associative Memory

 Our learning and training scheme employs a three phase 
associative memory process: 

 Sensory data transformations

 interfusion of sensory transforms

 associations and approximate recall

 All three phases use evolutionary neural network processing 
to perform their internals 



 Adaptive Sensory Data Pre-processing

 Heterogeneous sensors  pre-process raw data using distinct 
adaptive modules on the UAV

 High level features of information are extracted from raw 
sensory data, i.e. Fourier, wavelet

 Other information can be preferential rather than traditional 
math-based.  This is achieved with evolutionary preferential 
neural process learning.



Phase 1  -  Sensory preprocessing

a) pre-processing filters,  

b) high level feature extractors,

    Feature vector  fk   represents data of  Sensor-k



Multi Sensory Information Fusion

 Extracted high level information from sensors are merged into 
a single vector stream

 Merging uses statistical parameter, e.g. mean, weighted 
average, etc

 Merging can be  biased  with existing knowledge rather than 
standard unbiased statistical parameters.  This is achieved 
with evolutionary bias neural process learning.



Phase  2  -  Interfusion

Inputs  Feature vectors

Output  Signature vector 
representing sensory data

    g k  =   (b k ; w k )

     b k  =  (f 1k ... f sk )



Phase 3:  Associative Recognition

 Associative recognizers measure statistical similarity or 
difference between merged information and stored 
associative memory data

 Similarity measures determine the association matching 
levels between the merged information and stored data

 Often in practice, similarity measures in real association are 
not mathematically well defined.  This is achieved with 
evolutionary undefined neural process learning.



Evolutionary Training Scheme

 key advantage 

 neural net structural evolution

 training data enrichment

 The training scheme consists of of three nested processes

 a) coefficient training process (inner loop), 

 b) structural evolution process (middle loop) and 

 c) training data enrichment process (outer loop),



Training

 The coefficient training process (inner loop) is a variation of 
the back propagation algorithm using adaptive learning rates 
to accelerate convergence

 The structural evolution process (middle loop) evolves the net 
structure  to improve accuracy

 The training data enrichment process (outer loop)  explores 
and enhances  the input-output training data space efficiently. 
This helps to further improve the output accuracy and 
convergence



Data Enrichment Process

 Properties

 Addresses the multi-label and imbalanced data problem.

 Manipulates the imbalanced data by sub-sampling into more 
balanced data.

 Iteratively updates the sub-sampled data through the training.

 Improves the generalization performance of the training net.

 Differences

 Multi-label & imbalanced data problem addressed by ONE net. 

 Unique data selection technique to improve classifier training.

 Avoids sparsely data distribution assumption.

 No prior knowledge required.



Enrichment Initialization

 Enrichment Initialization re-samples the available imbalanced 
training data to create a subset of more balanced training 
data  for first time neural net classifier training.

 Steps

 Select a number of initial clusters, g

 Cluster training data into g clusters

 Select equal number of data from each cluster as active 
training set



Enrichment Initialization



Enrichment Update

 Enrichment Update incrementally adds and removes training 
data to/from the active training set at the end of an 
enrichment training iteration.

 Steps

 Train neural net with the active training set.

 Separate the active training set into 2 groups with respect to 
their errors.

 Add neighbors for high-group and remove half of low-group.



Enrichment Update



Enrichment Termination

 Enrichment Termination controls the enrichment process to 
iterate for a pre-set number of enrichment training iterations.

 Steps

 Check if the enrichment process repeats for a pre-set number 
of iterations.

 If NO, repeat Step 2.  Otherwise, stop.



Experimentation:  Robot arm controller

Left: sampled data with inputs 
(Angle, Gain) and expected 
output (Internal State, i.e. 
rotate left, rotate right, idle).

Right: same sampled data with 
three distinguished expected 
states, illustrating multi-label 
imbalanced data problem



Metrics

 True-Positive: classification result is confirmed as correct 
known label.

 False-Positive: classification result is miss-classified as 
different known labels.

 Control Accuracy (Ac): the percentage of accepted classified 
state in the sampled data.

 Control Error (Ee): the Euclidean distance between estimated 
control state and the sampled state in training data.



Advantages

 Data Enrichment supports neural network classifier in both 
linearly separable and non-linearly separable cases.

 Data Enrichment improves the neural network training 
yielding better trained network than conventional techniques.

 Data Enrichment reduces the time required to train a neural 
network for multi-label and imbalanced data.



Some Results

 Training repeats for 4 updates

 Step1: Enrichment Initialization

 Step2: Enrichment Update

 Step3: Enrichment Termination



Non-Linear Data Example



Status

 Theoretical model of the three-phase sensory cognitive 
processing scheme for training and operational mode

 Evolutionary Training of the cognitive processor including self-
modification of the NN structure and augmentation of 
additional training data

 simulation for NN coefficient weights training 

 simulation for the NN structural modification 

 simulation of data enrichment process

 Needs:

 Controlled scenario for testing and verification of the cognitive 
processing scheme with realistic information

 We will move the simulation to FPGA prototype



Assumptions on Existing Technologies

 We assume the following technologies already exist or are in 
process of development

 Communication and transmission technologies portable for 
short- and long-range

 Power and energy efficient devices for all sensory units

 Troopers equipped with sensor technologies

 Networking technologies  for effective sensor communication 
and processing

 small, reliable UAVs



Applications to UAV Missions

 Consider a reconnaissance mission

 Sensory transform phase maybe embedded in low flying           
 mini UAVs to collect and process diverse sensory data 

 Another UAV, possibly a master at higher altitude, may 
perform data interfusion

 Depending on the application mission, the master UAV may 
also perform data associations and matching in real time.  An 
associative memory should be included in the master UAV

 However, if associations sizes are large, the master UAV may 
contact the central command which can perform intensive 
associations for matching


